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Attractor bifurcation and on-off intermittency
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We analyze the bifurcation of an attractor in a system of multiplicatively coupled maps. It is shown that the
phenomenon can be characterized by on-off intermittency and it is rigorously described by the on-off inter-
mittency in the presence of noise through the concept of a virtually invariant manifold. Presenting numerical
results which conform our claims, we elucidate the role of on-off intermittency in bifurcation phenomena.
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Intermittency is characterized by temporarily repeat
bursting out of invariant objects such as fixed points, pe
odic orbits, and invariant subspaces, etc., and relatively l
evolution in their neighborhood@1–5#. Recently, in connec-
tion with the synchronization phenomenon and its vario
applications, on-off intermittency has attracted wide att
tion @3#. The bifurcation parameter of on-off intermittency
on a dynamic time-dependent forcing which contrasts w
other models such as Pomeau-Manneville intermitte
types@2# and crisis-induced intermittency@6# for which pa-
rameters are static.

In the synchronized regime the dynamics of a coup
system is restricted to an invariant subspace. The problem
synchronization of coupled systems is thus transmuted
problem of finding invariant subspace and analyzing its s
bility in coupled systems with multiplicative driving:

xn115L~xn ,yn!F~xn!, ~1!

yn115G~xn ,yn!, ~2!

wherexnPR N2,ynPR N1 with R N2øR N1[R N. The in-
variant manifold is a special solution which is satisfied w
L(x* ,yn)F(x* )5x* , ;ynPR N1. The only generic solu-
tion with the nonvanishing interaction (LÞ0) is x* 50 with
F(0)50 since the evolution kernel is vanished in this ca
only. The solutionx50 is fixed point inR N2 space as well
as invariant subspace inR N full phase space.

Recently Stefan´ski et al. @5# presented a model that exhib
its on-off intermittency after the destruction of a torus attra
tor that is not on the invariant manifold. Moreover, Ri
et al. @7#, showed that on-off intermittency could be a po
sible route to chaos in random dynamical systems. Their
vestigations open new aspects of on-off intermittency as w
as present the possibility that on-off intermittency plays
role of a new route to chaos in higher dimensional chao
systems.

In this Rapid Communication, we investigate the bifurc
tion phenomena of an attractor which appears in coup
systems. We also show that the phenomena can be un
stood as a process of losing stability of a properly defin
virtually invariant manifold. At a bifurcation point the tem
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poral behavior of the system is governed by on-off interm
tency in the presence of noise.

Let us consider the two-dimensional coupled system,

xn115L~yn ,l,e! f ~xn!, ~3!

yn115g~yn!, ~4!

where we take logistic mapxn(12xn) for f (xn) and Ber-
noulli map 2yn mod 1 for g(yn) @1#, and L(yn ,l,e)5l
1e(yn20.5). Here we consider the parameter regionl
P@0,4.0# with the coupling strengthe.0 acting as noise
intensity.

In the bifurcation diagram, one can see two special
gions A and B in which the topology of the attractors i
changed. The bifurcation points in these regions correspo
to the transcritical and supercritical bifurcation points of l
gistic map when the coupling strengthe is turned off. The
bifurcation phenomenon in regionA of Fig. 1 has been ex-
tensively studied in connection with the synchronization a
its practical applications, e.g., secure communication, sig
amplification, etc.@8#. Now it is understood as a process
losing stability of invariant manifold and its temporal beha
ior is characterized by on-off intermittency@3#.

So far, the bifurcation phenomenon like in regionB is
considered to be a kind of crisis phenomenon@6,9#, and it
has not been extensively studied with the reason that
phenomenon cannot be directly related to a synchroniza
manifold. According to Ref.@9#, a backward tangent bifur
cation should cause a tunnel effect between two forme
disjunct attractor bands in the regionB, so that an

FIG. 1. Bifurcation diagram of Eq.~3! whene50.2. In regionA
the invariant subspacex* 50 loses its stability, giving rise to on-of
intermittency. How can we understand the route of the bifurcat
in regionB?
©2001 The American Physical Society02-1
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intermittent-type dynamics should be induced by this sor
crisis, which was then called a tunnel crisis. The charac
istic exit times from one attractor band into another w
found to scale with the coupling strengthe in a different way
as compared with the typical crisis-induced intermitten
@6#.

Instead, here we will analyze the bifurcation phenomen
of the regionB in terms of on-off intermittency. As we sha
see, this phenomenon can be formally described as on
intermittency in the presence of noise by introducing
virtually invariant manifold.

Figure 2 is showing temporal behaviors for different p
rameters. We see that the temporal behavior in Fig. 2~a! is a
typical on-off intermittency@3#. It is known that the latter is
closely related to the loss of the stability of the invaria
manifold. However, it seems that the behavior in Fig. 2~b!
cannot be classified with any known type of intermitten
@2,3# because its bifurcation parameter is dynamical and
phenomenon is independent of the invariant manifold.

Let us first discuss regionA in Fig. 1. The onset point o
the on-off intermittency can be determined by evaluat
the transverse Lyapunov exponent. Expanding Eq.~3!
around the invariant manifoldxn50 one sees thatxn

5L(yn ,l,e)@ f (0)1 f 8(0)(xn)1O(xn
2)#. After t iterations,

one getsxn1t5P i 50
t21@L(yn1 i ,l,e) f 8(0)#xn . This allows

us to introduce the transverse Lyapunov exponent such
xn1t /xn5P i 50

t21L(yn1 i ,l,e);exp(ltt) and finally, we get
the following expression:

l t5
1

t (
i 51

t21

ln@L~yn1 i ,l,e! f 8~0!#. ~5!

When the transverse Lyapunov exponent becomes pos
the intermittent bursting is started. We can easily derive
transverse Lyapunov exponent since the invariant densit
Bernoulli mapg(yn) is uniform so that the exponent is give
by l t5*0

1ln@L(y,l,e)f8(0)#r(y)dy5log(l1e/2)(1/21l/e)
1 log(l2e/2)(1/22l/e)21. The onset conditionl t50 en-
ables us to obtain the onset parameter valuel5A11e2/4.

FIG. 2. Time series near the onset of bifurcations.~a! shows
typical on-off intermittency atl51.003 ande50.2 ~region A in
Fig. 1!. ~b! shows temporal behavior ofx2n vs n at l53.070 and
e50.2 ~regionB in Fig. 1!.
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In Fig. 3, one can identify the onset point of on-off inte
mittency, which is also evaluated from the above equat
l51.0049 . . . for e50.2. After the onset point, the invari
ant manifold becomes unstable and the intermittent burs
starts. The difficulty in analyzing the phenomenon of regi
B from Fig. 1 in an analogous way is that it is not a pheno
enon near the invariant manifold.

In order to describe the attractor bifurcation phenomen
in Fig. 4, we need to define an appropriate measure
enables us to identify the bifurcation point. The situation
not the same as in the previous case in which we co
linearize around the invariant manifold. As one can see
Figs. 4~a!–4~c!, after the bifurcation the attractor is separat
in the xn direction. Accordingly, if we define the loca
Lyapunov exponent in terms of thexn direction, it would
describe the bifurcation phenomenon appropriately. Cons
a point on attractor of Fig. 4~a!, sayxn , and its nearby point
xn85xn1dxn . After the one evolution the two points mappe
to xn11 and xn118 such that:xn115L(yn ,l,e) f (xn) and
xn118 5L(yn ,l,e) f (xn8). After expanding the last equatio
around xn and takingt iteration, we see thatdxn1t /dxn

5P i 50
t21L(yn1 i ,l,e) f 8(xn);exp(lxt), which enables us to

define the Lyapunov exponent in thexn direction

lx5
1

t (
i 50

t21

ln~ uL~yn1 i ,l,e! f 8~xn!u!. ~6!

FIG. 3. Transverse Lyapunov near the invariant manifold w
e50.2.

FIG. 4. Time series in regionB. ~a! Before the bifurcationl
52.95~b! onset of bifurcationl53.07, and~c! after the bifurcation
l53.10.
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The above definition describes the growth of the relat
distance between two points on an attractor in thex direction,
in contrast to the former definition of a transverse Lyapun
exponent, which measures the absolute distance from th
variant manifold. Now, we introduce the virtually invaria
manifold V, which is a manifold in R 2 such that: V
[$(x* ,yn)ux* 5 lime→0L(yn ,l,e) f (x* ) ;yn%. That is to
say, V is an invariant manifold when the coupling is va
ished.

Switching one means inducing perturbations around t
virtually invariant manifold. At every valueyn there exists
an instantaneously invariant manifold$(x* ,yn)ux*
5L(yn ,l,e) f (x* )%; together they form a cloud around th
virtually invariant manifold, so that instead of analyzin
merging attractor bands one can analyze the stability of
‘‘center’’ manifold of this cloud, i.e., the stability of the
virtually invariant manifold. By combining Eq. ~6!
with the virtually invariant manifold, we can find th
transverse Lyapunov exponent in this regime:lx

51/t( i 50
t21ln@uL(yn1i ,l,e)f8(x* )u#, where (x* ,yn)PV. Figure

5 is showing the calculated Lyapunov exponent. By prese
ing this figure, we want to explain the bifurcation pheno
enon in terms of the stability of the virtually invariant man
fold. We can see that the virtually invariant manifold in o
coupled systems becomes unstable in thexn direction from
l'3.0 and the attractor bifurcates.

Figure 6 shows the attractor in the whole phase space.
emphasize that this bifurcation phenomenon is clearly dis
guished from the so-called symmetry breaking and incre
ing bifurcation @4# as well as conventional on-off intermit

FIG. 5. Transverse Lyapunov exponent of the virtually invaria
manifold whene50.2.

FIG. 6. Attractors before@~a! l52.95] and after the bifurcation
@~b! l53.10] whene50.2.
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tency @3#, because our attractor does not have any disc
symmetry and it is not related to invariant manifold.

As one can see in Fig. 2~b!, there are two bands and eac
band corresponds to a new born attractor. Expanding Eq~3!
around the virtually invariant manifold, one sees thatxn11
5L ( yn ,l,e) f (x* )1L( yn ,l,e ) f 8(x* )( xn2x* ) 1 higher
order. Noting the definition of the virtually invariant man
fold, one obtains the following equation:

dxn115hndxn1ejn , ~7!

where dxn5xn2x* , hn5L(yn ,l,e) f 8(x* ), and jn5(yn
20.5)f 8(x* ). This is the normal form of on-off intermit-
tency in the presence of additive noise@10#. Here we can see
again that the coupling strengthe plays a role of noise level
For our system the driving termhn has a bias due to the fac
that actually our system is far from the invariant manifold.
other words, this bias is caused by introducing the virtua
invariant manifold instead of a true invariant manifold. A
cordingly, for given noise level, we can expect that there i
crossover timeN* for noise effects to become significan
@10#.

We can take one of two bands as a laminar phase
measure the laminar lengthl which is the duration time of
signal below a thresholdxth . Figures 7~a! and 7~b! show the
distribution function of the laminar lengthP( l ) in two dif-
ferent scales withxth50.69. For short laminar lengthl
!N* , we can see the scaling rule obeys the well-kno
23/2 power law in Fig. 7~a! which confirms that the dynam
ics is governed by on-off intermittency. And for long lamin
lengthl @N* one clearly sees thatP( l ) decays exponentially
in Fig. 7~b!. So in agreement with@10# our resulting scaling
can be expressed as follows:

P~ l !; l 23/2 for l ,N* ~e!,
~8!

P~ l !;exp@2N* ~e!l # for l .N* ~e!.

In Fig. 7~b!, we can see that the slope of the exponen
decay is getting smaller~slower mixing! as noise level is
decreased which is also strong implication that dynamic
governed by on-off intermittency with noise@10#. Based on
Eqs. ~7! and ~8! and numerical simulations in Fig. 7, w

t
FIG. 7. Distribution function of the laminar lengthP( l ) near the

onset of attractor bifurcation (l53.03) for different noise levels
(e50.20~filled circle!, e50.15~square!, ande50.1 ~circle!# in ~a!
log-log and~b! linear-log scale.
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conclude that the unusual temporal behavior, which app
near the onset of attractor bifurcation, is the typical on-
intermittency phenomenon.

Equivalently, we can understand the exponential deca
our distribution function of the laminar lengthP( l ) in terms
of crisis @6# and recurrence time of the attractor@11#. How-
ever, the23/2 scaling which appears in short laminar leng
regime cannot be explained in this way. Accordingly, w
conclude the observed phenomenon is better characte
by on-off intermittency than by crisis phenomenon, and
can be naturally understood in terms of on-off intermitten
in the presence of noise. Moreover, based on the argume
@3,10# our result would not be changed for other chaotic
noise driving. Therefore, the described phenomenon is
pected to be observed in many typical experimental sit
tions.

In conclusion, we investigated a special bifurcation ph
nomenon, namely, attractor bifurcation, in a system
coupled chaotic maps and analyzed the underling mecha
.
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of the phenomenon. Near the onset of bifurcation, the tra
tory shows intermittency-like bursting behavior by alte
nately traveling around two new born attractors. We int
duced the concept of the virtually invariant manifold a
showed that our coupled system could be reduced to
normal form of on-off intermittency near the virtually invar
ant manifold in presence of noise, with which we explain
the scaling rule in numerical simulations. All these obser
tions lead us to the conclusion that the attractor bifurcation
our systems is governed by on-off intermittency in prese
of noise. By this study we have elucidated the role of on-
intermittency and presented a coherent understanding o
furcation phenomena in terms of on-off intermittency, whi
appear near the invariant manifold as well as far from it.
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