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Attractor bifurcation and on-off intermittency
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We analyze the bifurcation of an attractor in a system of multiplicatively coupled maps. It is shown that the
phenomenon can be characterized by on-off intermittency and it is rigorously described by the on-off inter-
mittency in the presence of noise through the concept of a virtually invariant manifold. Presenting numerical
results which conform our claims, we elucidate the role of on-off intermittency in bifurcation phenomena.
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Intermittency is characterized by temporarily repeatingporal behavior of the system is governed by on-off intermit-
bursting out of invariant objects such as fixed points, peritency in the presence of noise.
odic orbits, and invariant subspaces, etc., and relatively long Let us consider the two-dimensional coupled system,
evolution in their neighborhoofll—5]. Recently, in connec-

tion with the synchronization phenomenon and its various Xn+1= A(Yn N, €)F(Xy), 3
applications, on-off intermittency has attracted wide atten-
tion [3]. The bifurcation parameter of on-off intermittency is Yn+1=9(Yn), (4)

on a dynamic time-dependent forcing which contrasts with .

other models such as Pomeau-Manneville intermittenC)Y"her.e we take logistic magy(1-x,) for f(x,) and Iier-

types[2] and crisis-induced intermittend] for which pa-  noulli map 2y, mod1 for g(y,) [1], and A(y,,\, €)=\

rameters are static. +e(yn—0.5). Here we 'conS|der the parameter regDpn
In the synchronized regime the dynamics of a coupled€ [0:4.01 with the coupling strengtie>0 acting as noise

system is restricted to an invariant subspace. The problem #fensity. _ _ _
synchronization of coupled systems is thus transmuted as a /" the bifurcation diagram, one can see two special re-

problem of finding invariant subspace and analyzing its stad°ns A and B in which the topology of the attractors is
bility in coupled systems with multiplicative driving: changed. Thg plfurcauon points in the;e regions c'orresponds
to the transcritical and supercritical bifurcation points of lo-

Xnt1=A (X Yn)F(Xq), (1)  9gistic map when the coupling strengehis turned off. The
bifurcation phenomenon in regioh of Fig. 1 has been ex-
Yoi1=G(Xy,Yr) ) tensively studied in connection with the synchronization and
et nane its practical applications, e.g., secure communication, signal
wherex, e RNy, e RN+ with RN-URN+=RN. The in- am_plificatio_r_], etc_[8]. Now it is _understopd as a process of
hlosmg stability of invariant manifold and its temporal behav-
ior is characterized by on-off intermitten¢g].
So far, the bifurcation phenomenon like in regiBnis
onsidered to be a kind of crisis phenomernérf], and it
as not been extensively studied with the reason that this
phenomenon cannot be directly related to a synchronization
manifold. According to Ref[9], a backward tangent bifur-
cation should cause a tunnel effect between two formerly
disjunct attractor bands in the regioB, so that an

variant manifold is a special solution which is satisfied wit
A(X* Yy F(X*)=x*, Vy,e RN+. The only generic solu-
tion with the nonvanishing interactiom\(# 0) is x* =0 with
F(0)=0 since the evolution kernel is vanished in this caseﬁ
only. The solutiorx=0 is fixed point inR N~ space as well
as invariant subspace RN full phase space.

Recently Stefaski et al.[5] presented a model that exhib-
its on-off intermittency after the destruction of a torus attrac-
tor that is not on the invariant manifold. Moreover, Rim
et al. [7], showed that on-off intermittency could be a pos- : :
sible route to chaos in random dynamical systems. Their in-

vestigations open new aspects of on-off intermittency as well 0.8 o 1

as present the possibility that on-off intermittency plays a 0.6 3 |

role of a new route to chaos in higher dimensional chaotic X,

systems. 04 ]
In this Rapid Communication, we investigate the bifurca- 0.2 )

tion phenomena of an attractor which appears in coupled .
systems. We also show that the phenomena can be under- : - , ,
stood as a process of losing stability of a properly defined 0 1 2 3 4
virtually invariant manifold. At a bifurcation point the tem-

FIG. 1. Bifurcation diagram of Eq3) whene=0.2. In regionA
the invariant subspao€ =0 loses its stability, giving rise to on-off
*Electronic address: whkye@yahoo.com intermittency. How can we understand the route of the bifurcation
TElectronic address: topaj@stat.physik.uni-potsdam.de in regionB?
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h FIG. 3. Transverse Lyapunov near the invariant manifold with
FIG. 2. Time series near the onset of bifurcatio@. shows €= 0-2-
typical on-off intermittency ai =1.003 ande=0.2 (region A in . . . . .
Fig. 1). (b) shows temporal behavior of,, vs n at A =3.070 and In Fig. 3, one can identify the onset point of on-off inter-
€=0.2 (regionB in Fig. 1). mittency, which is also evaluated from the above equation

N=1.008 ... for e=0.2. After the onset point, the invari-

intermittent-type dynamics should be induced by this sort ofam manifold 'bgcomgs unstaple and the intermittent bursﬁmg
starts. The difficulty in analyzing the phenomenon of region

crisis, which was then called a tunnel crisis. The character: . . . e
- - : B from Fig. 1 in an analogous way is that it is not a phenom-
istic exit times from one attractor band into another was

. ; . ; enon near the invariant manifold.
found to scale with the coupling strengthin a different way : . .

. . AN . . In order to describe the attractor bifurcation phenomenon
as compared with the typical crisis-induced intermittency:.

6] in Fig. 4, we need to define an appropriate measure that

Instead, here we will analyze the bifurcation phenomenor?nables us to identify the bifurcation point. The situation is

of the regionB in terms of on-off intermittency. As we shall hot the same as in the previous case in which we could

) . earize around the invariant manifold. As one can see in
see, this phenomenon can be formally described as on-of. . : -
; . . - . . igs. 4a)—4(c), after the bifurcation the attractor is separated
intermittency in the presence of noise by introducing the.

virtually invariant manifold. in the x, direction. Accordingly, if we define the local

Figure 2 i shoving emporlbehaviors o iferent pa IS0UTCY SOOI e G Sheeton L vk
rameters. We see that the temporal behavior in FHig. i a P pprop Y-

typical on-off intermittency{3]. It is known that the latter is a,pomt on attractor of Fig.(d), SayXn, and its ngarby point

closely related to the loss of the stability of the invariantXn=Xn™ Xn- A,fter the one evolution the two points mapped

manifold. However, it seems that the behavior in Fig)2 0 Xn+1 and X,y such that:x,.,=A(yn.\,€)f(x,) and

cannot be classified with any known type of intermittencyXn+1=A(Yn N, €)f(Xy). After expanding the last equation

[2,3] because its bifurcation parameter is dynamical and th@roundx, and taking = iteration, we see thabx, . ,/ox,

phenomenon is independent of the invariant manifold. =I1729A(Yn+i N €)' (X,) ~exp@7), which enables us to
Let us first discuss regioA in Fig. 1. The onset point of define the Lyapunov exponent in thg direction

the on-off intermittency can be determined by evaluating

the transverse Lyapunov exponent. Expanding [E3). B )

around the invariant manifoldk,=0 one sees thak, )\X_? Z‘O IN(AYn+i A e (Xn)]). ©6)

=A(y, ,)\,e)[f(0)+f’(O)(xn)+O(xﬁ)]. After r iterations,

one getsx,, ,=I17_3[A(Yn+i \,€)f'(0)]x,. This allows

us to introduce the transverse Lyapunov exponent such that

Xt /X0 =TI7_3A(Ynsi N, €)~exp7) and finally, we get

the following expression:

7—1

7—1

1
M= 2 LAY O (0)]. (5)

When the transverse Lyapunov exponent becomes positive
the intermittent bursting is started. We can easily derive the © e
transverse Lyapunov exponent since the invariant density of 0 5000
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Bernoulli mapg(y,) is uniform so that the exponent is given n
by )\tzféln[_/\(y,)\,e)f’(O)]p(y)dy=Iog()\-i-6/2?(1/2+ A e) FIG. 4. Time series in regioB. (a) Before the bifurcation
+log(A—€/2)(1/2—N/e)— 1. The onset condition;=0 en- =2 .95(b) onset of bifurcation\ = 3.07, andc) after the bifurcation

ables us to obtain the onset parameter valae\/1+ %/4. A=3.10.
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FIG. 5. Transverse Lyapunov exponent of the virtually invariant

manifold whene=0.2. FIG. 7. Distribution function of the laminar leng®#(l) near the

onset of attractor bifurcation\(=3.03) for different noise levels
(e=0.20(filled circle), e=0.15(square, ande=0.1(circle)] in (a)

The above definition describes the growth of the relativelog_Iog and(b) linear-log scale

distance between two points on an attractor inkki@ection,
In contrast to .the former definition of a transverse Lyapuno_vtency [3], because our attractor does not have any discrete
exponent, which measures the absolute distance from the in-

variant manifold. Now, we introduce the virtually invariant symmetry and it is not refated to invariant manifold.
manifold V, which is a manifold inR2 such that V As one can see in Fig.(B), there are two bands and each

—{(¢* Y [ =lim,_oA(yn. N €)f(x*) Wy}, That is to band corresponds to a new born attractor. Expandingd &g.

: . : . o around the virtually invariant manifold, one sees tkat ;
say, V is an invariant manifold when the coupling is van- =A(Yn.N€) FOXF)+HA(Yn,N, €) F/(X*)(Xy—X*) + higher
[{EEAT] nafta n

IShSS\/'itching one means inducing perturbations around theorder. Noting the definition of the virtually invariant mani-
. . : : . fold, one obtains the following equation:
virtually invariant manifold. At every valug, there exists
an instantaneously invariant manifold{(x*,y,)|x*
=A(Yn N\, €)f(x*)}; together they form a cloud around the
virtually invariant manifold, so that instead of analyzing where 8x,=x,—X*, 7,=A(Yy,\,€)f’(x*), and &,=(y,
merging attractor bands one can analyze the stability of the-0.5)f"(x*). This is the normal form of on-off intermit-
“center” manifold of this cloud, i.e., the stability of the tency in the presence of additive no[4®]. Here we can see
virtually invariant manifold. By combining EQ.(6)  again that the coupling strengéhplays a role of noise level.
with the virtually invariant manifold, we can find the For our system the driving term, has a bias due to the fact
transverse Lyapunov exponent in this regimey,  that actually our system is far from the invariant manifold. In
= UrSZgIn[|A(Ynsi N ©)F (X*)[], where &*,y,) e V. Figure  other words, this bias is caused by introducing the virtually
5 is showing the calculated Lyapunov exponent. By presentinvariant manifold instead of a true invariant manifold. Ac-
ing this figure, we want to explain the bifurcation phenom-cordingly, for given noise level, we can expect that there is a
enon in terms of the stability of the virtually invariant mani- crossover timeN* for noise effects to become significant
fold. We can see that the virtually invariant manifold in our [10].
coupled systems becomes unstable inxhealirection from We can take one of two bands as a laminar phase and
A~3.0 and the attractor bifurcates. measure the laminar lengthwhich is the duration time of
Figure 6 shows the attractor in the whole phase space. Wsignal below a thresholg,,,. Figures 7a) and 7b) show the
emphasize that this bifurcation phenomenon is clearly distingdistribution function of the laminar lengtR(l) in two dif-
guished from the so-called symmetry breaking and increasterent scales withx,,=0.69. For short laminar length
ing bifurcation[4] as well as conventional on-off intermit- <N*, we can see the scaling rule obeys the well-known
—3/2 power law in Fig. 7@ which confirms that the dynam-

OXny1= MOXn+ €&y, (7)

(a) ics is governed by on-off intermittency. And for long laminar

1~0_ ] 1.0z lengthl>N* one clearly sees th&(l) decays exponentially
in Fig. 7(b). So in agreement withl0] our resulting scaling

0.8 0.8

I ] I can be expressed as follows:
0.6 0.6 &%

Kt 11 P()~1"% for I<N*(e),

0.4 0.4 (8)
0.2-— 1 0.2- P(l)~exd —N*(e)l] for I>N*(e).

I ] L In Fig. 7(b), we can see that the slope of the exponential
0.05'5 0.80%' ig. 7(b), w p Xp i

decay is getting smallefslower mixing as noise level is
decreased which is also strong implication that dynamics is
governed by on-off intermittency with noi§&0]. Based on
Egs. (7) and (8) and numerical simulations in Fig. 7, we

FIG. 6. Attractors beforg(a) A =2.95] and after the bifurcation
[(b) A=3.10] whene=0.2.
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conclude that the unusual temporal behavior, which appeaisf the phenomenon. Near the onset of bifurcation, the trajec-
near the onset of attractor bifurcation, is the typical on-offtory shows intermittency-like bursting behavior by alter-
intermittency phenomenon. nately traveling around two new born attractors. We intro-
Equivalently, we can understand the exponential decay igluced the concept of the virtually invariant manifold and
our distribution function of the laminar lengf(l) in terms  showed that our coupled system could be reduced to the
of crisis [6] and recurrence time of the attracfdrl]. How-  normal form of on-off intermittency near the virtually invari-
ever, the—3/2 scaling which appears in short laminar lengthant manifold in presence of noise, with which we explained
regime cannot be explained in this way. Accordingly, wethe scaling rule in numerical simulations. All these observa-
conclude the observed phenomenon is better characterizglns jead us to the conclusion that the attractor bifurcation in

by OQ'Oﬁ interl:”nittegcy thag by crisis ?henongnon, and itgr systems is governed by on-off intermittency in presence
can be haturally un grstoo In terms of on-o mtermlttencyof noise. By this study we have elucidated the role of on-off
in the presence of noise. Moreover, based on the argument

[3,10] our result would not be changed for other chaotic 0r|Hterm|ttency and pres.ented a coherent. understandmg qf bi-
furcation phenomena in terms of on-off intermittency, which

noise driving. Therefore, the described phenomenon is ex- . . . .
appear near the invariant manifold as well as far from it.

pected to be observed in many typical experimental situa-
tions. We thank A. Pikovsky and H.L. Yang for stimulating

In conclusion, we investigated a special bifurcation pheiscussions and W.H.K thanks A. Pikovsky for financial
nomenon, namely, attractor bifurcation, in a system ofsypport.

coupled chaotic maps and analyzed the underling mechanism
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